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ABSTRACT 

 

BAMM (Bayesian Analysis of Macroevolutionary Mixtures) is a statistical framework that uses 

reversible jump MCMC to infer complex macroevolutionary dynamics of diversification and 

phenotypic evolution on phylogenetic trees. A recent article by Moore and coauthors (MEA) reported a 

number of theoretical and practical concerns with BAMM. Major claims from MEA are that (1) 

BAMM's likelihood function is incorrect, because it does not account for unobserved rate shifts; (2) the 

posterior distribution on the number of rate shifts is overly sensitive to the prior; and (3) diversification 

rate estimates from BAMM are unreliable. Here, we show that these and other conclusions from MEA 

are generally incorrect or unjustified. We first demonstrate that MEA's numerical assessment of the 

BAMM likelihood is compromised by their use of an invalid likelihood function. We then show that 

"unobserved rate shifts" appear to be irrelevant for biologically-plausible parameterizations of the 

diversification process. We find that the purportedly extreme prior sensitivity reported by MEA cannot 

be replicated with standard usage of BAMM v2.5, or with any other version, when conventional 

Bayesian model selection is performed. Finally, we demonstrate that BAMM performs very well at 

estimating diversification rate variation across the ~20% of simulated trees in MEA's dataset for which 

it is theoretically possible to infer rate shifts with confidence. Due to ascertainment bias, the remaining 

80% of their purportedly variable-rate phylogenies are statistically indistinguishable from those 

produced by a constant-rate birth-death process and were thus poorly-suited for the summary statistics 

used in their performance assessment. We demonstrate that inferences about diversification rates have 

been accurate and consistent across all major previous releases of the BAMM software. We recognize 

an acute need to address the theoretical foundations of rate-shift models for phylogenetic trees, and we 

expect BAMM and other modeling frameworks to improve in response to mathematical and 
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computational innovations. However, we remain optimistic that that the imperfect tools currently 

available to comparative biologists have provided and will continue to provide important insights into 

the diversification of life on Earth. 
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 Rates of lineage diversification -- speciation and extinction -- vary widely across the Tree of 

Life, and this variation underlies many large-scale patterns of biological diversity. Variation in 

evolutionary rates contributes to striking disparities in species richness among groups of organisms, to 

the waxing and waning of clades in deep time, and to latitudinal and other spatial diversity gradients.  

Consequently, there has been widespread interest in methods for inferring the dynamics of speciation 

and extinction from molecular phylogenies of extant taxa. Dated phylogenies of extant species contain 

an imperfect record of the history of speciation through time, even if the phylogeny itself has been 

estimated without error (Nee et al. 1994; Mooers and Heard 1997; Barraclough and Vogler 2002). The 

record is imperfect because a speciation event cannot be observed in a reconstructed phylogenetic tree 

unless one or more descendants of both progeny lineages have survived to the present. Many statistical 

tools have been developed to extract information about speciation and extinction rates from molecular 

phylogenies (Ricklefs 2007; Stadler 2013; Morlon 2014), including the extent to which those rates 

have varied through time (Pybus and Harvey 2000; Morlon et al. 2010; Silvestro et al. 2011; Stadler 

2011) and among lineages (Alfaro et al. 2009; Morlon et al. 2011; Etienne and Haegeman 2012; 

Lewitus and Morlon 2016).    

 BAMM (Bayesian Analysis of Macroevolutionary Mixtures) is a computer program for 

inferring the dynamics of speciation and phenotypic evolution on phylogenetic trees (Rabosky et al. 

2013; Rabosky 2014; Rabosky et al. 2014a). The diversification models implemented in BAMM are 

based on a simple birth-death process, a feature shared with most other methods for studying 

diversification rates on phylogenies (O'Meara 2012). BAMM uses reversible jump Markov chain 

Monte Carlo (rjMCMC) to infer complex mixtures of distinct evolutionary rate dynamics across the 

branches of phylogenies. In the BAMM framework, a "rate shift" is a transition to a new set of 

evolutionary parameters along a branch in a reconstructed phylogenetic tree, and a "shift 
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configuration" is a particular mapping of evolutionary rate parameters across the phylogeny as a whole 

(Rabosky et al. 2014b). A set of rate shifts and associated parameter values mapped to a set of 

branches on a phylogeny thus defines a particular shift configuration. Using rjMCMC, BAMM 

simulates a posterior distribution of shift configurations conditioned on an observed phylogenetic 

dataset. The resulting distribution reflects uncertainty in evolutionary rates across the phylogeny and 

can be parsed to extract a range of summary attributes, including tip-, branch-, and clade-specific rates 

of speciation and extinction. The method also provides statistical evidence for the number and location 

of rate shifts across phylogenies.  

 BAMM belongs to a more general set of diversification methods that relax the assumption of 

rate homogeneity across the branches of a phylogenetic tree. Some methods, including those that allow 

rates of speciation (λ) and/or extinction (µ) to vary through time (Nee et al. 1994; Rabosky and Lovette 

2008; Morlon et al. 2010; Stadler 2011; Etienne et al. 2012) assume that all contemporaneous lineages 

have precisely the same rates of speciation and extinction. All lineages in these homogeneous models 

are said to be of the same "type" and have the property that any two lineages i and j have the same 

evolutionary rates at a given point in time from the root node, e.g., λi(t) = λj(t), and µi(t) = µj(t). This 

homogeneous class of models can be contrasted with multi-type branching process models that allow 

mixtures of different types of lineages across the branches of a phylogeny, such that lineages 

potentially differ in their rates of speciation and extinction. The calculations in BAMM are based on 

the multi-type branching process, as are many other methods (Maddison et al. 2007; Alfaro et al. 2009; 

Morlon et al. 2011; Beaulieu and O'Meara 2016). As discussed below, BAMM utilizes a subclass of 

multi-type branching processes that we will refer to as "rate-shift" models. These models enable the 

calculation of the likelihood of a specific configuration of diversification rate regimes on a 

phylogenetic tree.  



 6

 A recent article by Moore et al. (2016) assessed the theoretical foundations of the inference 

model in BAMM and its Bayesian implementation. Moore et al. (hereafter, MEA) state that the 

likelihood function in BAMM is incorrect and that the prior model for rate shifts is theoretically 

unsound. MEA explored the performance of BAMM in practice and reported statistical pathologies 

that render inferences with BAMM unreliable. The authors conclude, through analysis of simulated 

and empirical datasets, that (i) posterior estimates of the number of rate shifts are extremely sensitive 

to the assumed prior; and (ii) diversification rate parameters are uncorrelated with the true values in the 

simulation model. On the basis of these concerns, the authors concluded that BAMM is flawed and 

should not be used. 

 Here, we assess the validity of major claims from MEA and conclude that their results are 

either incorrect or inconclusive. A summary these claims, how they were tested by MEA, and how we 

assess their validity in the current study, is provided in Table 1; claim numbers are cross-referenced in 

major section headings. Our treatment in this article generally follows Table 1: we first address 

theoretical issues associated with BAMM and MEA likelihoods, then consider BAMM's performance 

in practice (including earlier versions of the software). We welcome critical analysis of BAMM and 

believe that progress in our field requires continued attention to the assumptions that underlie this and 

other inference tools. However, we believe that MEA have provided an inaccurate assessment of 

BAMM and its limitations. It is important to evaluate these issues fairly because several concerns 

raised by MEA pertain to all rate-shift models. We conclude that BAMM is an imperfect tool that has a 

clear path for theoretical improvement, but which nonetheless performs and has performed well in 

practice. Furthermore, we believe that the critical future directions for rate-shift models involve issues 

that are either neglected or incorrectly emphasized by MEA.  
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 Scope of the present article.— Here we focus primarily on the validity of MEA's claims 

regarding BAMM v2.5, which was used to obtain all results in their article. This version is the most 

recent major release of BAMM and has been available longer than any other single release of the 

program as of January 2017. Nonetheless, we have included a comprehensive performance assessment 

of all major previous releases of BAMM to determine the reliability of the program as used in earlier 

research. We also describe the theoretical and implementational differences between these major 

releases of the software in the Supplementary Material that accompanies this article (available on 

Dryad at doi:10.5061/dryad.36g21). We note that our conclusions are restricted to diversification 

models, as MEA did not critique the phenotypic evolutionary models implemented in BAMM. 

 Re-analysis of MEA input files.— The Dryad submission to accompany MEA's article does not 

include their complete BAMM output, but does include all input files required to replicate their 

analyses precisely. We repeated all BAMM analyses exactly as performed by MEA using their input 

(control) files using BAMM v2.5. As described below, MEA included a non-standard option 

("combineExtinctionAtNodes = random"), not visible to end-users, that altered a default value in their 

analyses; we therefore performed a second set of analyses where we restored this undocumented 

feature to its default value in order to obtain BAMM results that are consistent with those that would 

be obtained by a typical user of the program. Throughout our article, we reference MEA's results but 

acknowledge that these were obtained by repeating their analyses using their analysis files exactly as 

they were provided on Dryad. Given the stochastic nature of MCMC, we expect to observe minor 

numerical discrepancies between our results and theirs. 

 

CLAIM 1. ARE THE BAMM AND MEA LIKELIHOODS COMPARABLE? 
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 The fundamental operation in the analysis of rate-shift models involves the calculation of the 

likelihood of a phylogenetic tree under a given set of evolutionary rate parameters and mapping of 

transition points (rate-shifts) between parameter sets on the tree. MEA claim that the BAMM 

likelihood is incorrect because it fails to account for rate shifts that may have occurred on unobserved 

lineages. To assess the consequences of unobserved rate shifts for BAMM, MEA provided an 

independent implementation of the BAMM likelihood function where the extinction probabilities are 

estimated under a computationally-intensive Monte Carlo approximation that simulates the effects of 

unobserved rate shifts. They compared extinction probabilities and likelihoods computed by BAMM to 

those of their independent implementation with Monte Carlo extinction estimates (MEA Figures 2 - 3). 

All analyses from MEA assume that their likelihood function is correct, an assumption that was only 

tested for the constant-rate (no shift) birth-death process. MEA's results further assume that the only 

difference between BAMM and their implementation involves the effects of unobserved rate shifts on 

extinction probabilities. MEA found that their likelihoods differed from those computed by BAMM, 

which they attributed exclusively to the effects of unobserved rate shifts. However, if MEA did not 

correctly implement the BAMM likelihood function and/or if their own likelihood function is invalid, 

then they have not demonstrated an effect of unobserved rate shifts on the likelihoods computed by 

BAMM, because any discrepancies between their implementation and BAMM could reflect other 

differences in the algorithms used to compute the likelihood. In this section, we focus solely on 

whether MEA have demonstrated an effect of unobserved rate shifts on the BAMM likelihood; the 

next major section (Claim 2) addresses the biological relevance of these unknown quantities. 

 

Likelihoods of Rate-Shift Models 
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 As MEA explain, computing the likelihood of a phylogeny where rate-shifts have been placed 

on the tree can be considered a form of data augmentation; we retain this terminology for comparison 

with their article but note that many other researchers would simply consider the shifts to be part of the 

model (e.g., they are not data). The "augmentation", in this case, is the specific mapping of rate 

regimes across a phylogeny (and their associated parameters) that is used during the calculation of the 

likelihood. We can contrast the likelihood of a phylogeny under a diversification process with a data-

augmented history (as in BAMM) with the corresponding likelihood under the complete process, 

without data augmentation. A likelihood calculation with BiSSE (Maddison et al. 2007; FitzJohn et al 

2009), for example, does not involve any data-augmentation: although the model assumes that there 

are two classes of diversification rates across the tree, the likelihood is computed without placing the 

rate shifts (e.g., character state changes) on the branches of the tree. A likelihood calculation with 

BiSSE involves integrating over all possible histories of diversification rate changes that could yield 

the observed tree and its associated character state data.  

 Data augmentation is essential for likelihood calculations under rate-shift models for two 

reasons. First, the number of possible diversification processes is infinite, rendering the BiSSE-type 

calculations infeasible; this point is discussed clearly by MEA. Perhaps more importantly, we are not 

generally interested in the likelihood of a phylogeny after integrating over all possible rate-shifts that 

could produce the observed data. Most researchers are interested in the likelihoods of alternative data-

augmented histories (e.g., configurations of rate shifts). A question such as: how does the likelihood of 

a given phylogeny with no rate shifts compare to the corresponding likelihood of the same tree with 

one rate shift is a question about the relative probability of two data-augmented histories. Hence, the 

data-augmented histories and their associated likelihoods are the objects of interest for most empirical 

researchers.   
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  Rate-shift models with data augmentation have been widely used to model diversification 

heterogeneity across phylogenies (Alfaro et al. 2009; Morlon et al. 2011; Etienne and Haegeman 2012; 

Rabosky 2014). Moreover, state-dependent models with "split" parameter sets (FitzJohn 2010; 

FitzJohn 2012) also fall into this category, as they assume discrete shifts in parameter sets at specific 

locations on the tree with no formal stochastic process for transitioning between parameter sets on each 

partition. In split-BiSSE, for example (FitzJohn 2010; FitzJohn 2012), we assume that there are two or 

more rate partitions across a phylogeny, each of which has a set of parameters associated with it. 

Within partitions, we may be integrating over possible diversification histories, but the assumption of 

distinct parameter partitions and associated shift locations is data augmentation, at least under MEA's 

terminology. In fact, if we constrain a split-BiSSE model to the special case where there is no state-

dependence of diversification rates, we have specified a mapping of diversification parameters and 

rate-shift locations across a phylogeny, precisely as in MEDUSA and BAMM. 

 The likelihood of a particular rate-shift configuration is based on a set of differential equations 

that describe transition probabilities for a stochastic birth-death process. These equations are solved 

backwards in time along individual branches of the tree, from the tips to the root. The differential 

equations for the likelihood involve two probabilities. The first, Di(t), is the probability that a lineage 

in the i'th rate regime at some point in time (i.e., a location on an observed branch of a phylogeny) 

gives rise to all observed lineages descended from that particular point on the tree. The second 

equation, Ei(t), describes the probability that a lineage in the i'th rate regime has gone extinct before the 

present. Letting λi and µi denote the corresponding speciation and extinction rates for the regime, we 

have 

 

dDi

dt
= − λi + µi +η( )Di t( ) + 2λiDi t( )Ei t( )      (eqn 1) 
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and 

 

dEi

dt
= µi − λi + µi +η( )Ei t( ) + λiEi t( )2 +ηΦ t,η( )

                   (eqn 2)
 

 

The parameter η corresponds to the rate at which a lineage shifts to a new rate regime, similar to the Λ 

term in Rabosky (2014). The ηΦ(t, η) term describes the probability that a lineage at time t undergoes 

a rate shift to new rate regime, drawn from the set of all possible shift parameters, and is subsequently 

unobserved; MEA describe this term as pertaining to extinct rate shifts, but it applies more generally to 

rate shifts that occur on branches that are unobserved for any reason. For consistency with MEA, we 

will generally interpret this term as the chance of extinction due to rate shifts on unobserved branches 

of a phylogeny; MEA's incorporation of this term into the formal mechanics of rate-shift models is an 

advance that has largely been overlooked by prior work on this topic. Note that BiSSE and related 

models allow rate shifts (e.g., state changes) on unobserved lineages, but accommodating these is 

straightforward, as the model specifies a finite number of lineage types: there are only two possible 

types of lineages in BiSSE, corresponding to the two character states. The state-space in BAMM and 

related models is infinite, such that there is no solution to ηΦ(t, η). 

 With the exception of MEA, all published rate-shift models at the time of this writing have 

implicitly assumed η = 0 (Table 2). The likelihood functions in all such models, including BAMM, 

condition the likelihood on the non-occurrence of rate shifts on extinct side-branches of the observed 

phylogeny (see MEA Fig. 1). We disagree with MEA’s terminology that this conditioning constitutes a 

theoretical error -- all models involve simplifying assumptions -- but we agree that it is important to 

assess whether or not a simplifying assumption has a negative impact on inference. 
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Likelihood of Rate-Shifts under MEA.  

 

 MEA provide an innovative solution to approximating the value of ηΦ(t, η) through 

computationally-intensive Monte Carlo simulation of the extinction probability at each point in time 

given prior assumptions about the underlying distributions of λ and µ. The η parameter is heavily 

influenced by the data augmentation (e.g., the number of shifts placed on the observed portion of the 

tree), but the Φ(t, η) term is influenced both by the inferred shift rate and prior assumptions about the 

underlying distributions of λ and µ.  

 At the root of the tree, the likelihood of the data is conditioned on the probability of observing a 

phylogeny, as is commonly done for phylogenies of extant taxa (Nee et al. 1994). Thus, the likelihood 

of the tree τ is divided by the probability that the process at the root of the tree (θR) leaves two 

surviving crown lineages. The likelihood of the data-augmented history is 

 

L τ |θR ,θ1,θ2 ....θn;PS = 1( ) = L τ |θR ,θ1,θ2 ....θn( )
1− ER t0( )( )2     (eqn. 3) 

 

where Ps denotes the probability of crown-clade survival, t0 is the time of the root node in the tree, and 

θ1, θ2, .... θn denotes the set of n non-root rate regimes that have been placed on the tree. The ER(t0) 

term is the probability of extinction for a single lineage originating at the root with parameters θR.  

 The likelihood described above suffers from a deep theoretical problem that has largely gone 

unrecognized by the field, even when we ignore the potential effects of unobserved rate shifts (η = 0). 

Specifically, the extinction probability at the root of the tree, ER(t0), must account for the fact that we 
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are computing the likelihood of a tree with data-augmented histories that can make the process more or 

less likely to survive than would be expected based on the parameters at the root of the tree. In other 

words, the extinction probability of a lineage must be conditioned on the data augmentation, or the set 

of rate shifts that are assumed to have occurred.    

 Under MEA's likelihood, all calculations for E(t), including those used for conditioning at the 

root of the tree, are performed only with the current values of speciation and extinction (e.g., λi(t), 

µi(t)). The extinction probability of the entire process is a simple function of the age of the tree and the 

rates at the root (θR) and ignores all information regarding rate shifts that have been placed on the tree. 

It is straightforward to demonstrate that this conditioning scheme, which is used by several modeling 

frameworks (Table 2), can lead to nonsensical probabilities and incorrect inference. To be clear, this 

problem is not consistently resolved in the literature: three methods that implement some form of E(t) 

conditioning (Morlon et al 2011; Etienne and Haegeman 2012; Rabosky 2014) entail different 

assumptions (Table 2), suggesting an acute need for a comprehensive theoretical treatment of this topic.  

 To demonstrate that the MEA likelihood is not valid, we will first convert the likelihood 

expression into a formal probability. We will then demonstrate that the method of computation can 

yield probabilities that are not bounded on the interval (0, 1). A formal proof of this property is 

provided in the Appendix, but here we consider two empirical scenarios with data augmentation. In the 

first scenario, we have a single observed lineage segment where some initial set of parameters (λ0, µ0) 

shifts to a new set of parameters (λ1, µ1) at some time ts (Fig. 1a). In the second scenario, a phylogeny 

of four taxa undergoes independent rate shifts on each of the lineages descended from the crown node 

(Fig. 1d). This four-taxon tree scenario enables us to compute the probability a phylogenetic tree using 

the likelihood calculator distributed with MEA's Dryad files, which ensures that the properties we 

describe here are not strictly a function of our implementation of the MEA likelihood expression.  
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 The unconditioned likelihood of the data-augmented history shown in Figure 1a, with distinct 

sets of rate parameters on intervals x1 and x2, is  

 

P x0 | λ0,µ0( )P x1 | λ1,µ1( )η     (eqn 4) 

 

where P(x | λ, µ) denotes the probability of the corresponding segment as computed using eqn 1 and 

eqn 2. This expression is a probability density (see Maddison et al. 2007 for discussion of this point), 

due to the presence of the η term. By conditioning on the observation of a shift at ts and on the non-

extinction of the process, we convert the expression into a formal probability, or  

 

P x0 | λ0 ,µ0( )P x1 | λ1,µ1( ) / 1− E0 t0( )      (eqn 5) 

 

where E0(t0) is the probability that a single lineage with parameters (λ0, µ0) at the start of the process 

goes extinct before the present. We can perform a similar conditioning for the four-taxon tree, except 

that we also condition on the existence of two non-root speciation events, the root node, and the 

survival of the crown clade.  

 The behavior of the MEA probability as a function of the speciation and extinction rates on the 

root segment (x0) is shown in Fig. 1 (b, c). When the chance of extinction of the root process (λ0, µ0) is 

high, the probability of the data can increase arbitrarily to infinity (Appendix). A similar effect is noted 

for the probability of the four-taxon tree using the MEA likelihood calculator (Fig. 1e, f). The root 

conditioning in MEA's code for likelihood calculations is described in our Supplementary Material 
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section S2.1 - 2.2; we also demonstrate that the MEA likelihood can tend to infinity for the cetacean 

dataset (Fig. S1). 

 The failure of the MEA likelihood to remain bounded between 0 and 1 is a simple consequence 

of incomplete data augmentation. The data-augmented process contains a rate shift (or two rate shifts, 

in the four-taxon tree). This rate-shift, under these parameterizations, renders the extinction of the 

overall process unlikely (e.g., in this example, the shift parameters involve a rate regime with a very 

small chance of extinction). Hence, if the process survives to time ts, a rate shift will occur that 

dramatically changes the overall probability of extinction of the process. The MEA equation does not 

account for this: because the extinction probability is a strict function of the age of the process and the 

parameters at the root, the chance of extinction can asymptotically approach unity, even if the data-

augmented history implies that the true chance of extinction is low. Specifically, the denominator in 

equation 5 can approach zero even when the numerator is unity (Appendix). Hence, the equation is 

unbalanced, and the unconditioned probability in eqn 4 (which can take any value between 0 and 1) is 

divided by probability of survival that, in the limit, can approach zero. In contrast, the corresponding 

BAMM probability is conditioned on the data augmentation and is bounded on the correct interval. 

 

BAMM and other Likelihoods with E(t) Augmentation.  

 

 The BAMM likelihood differs from the MEA likelihood, and not simply because of the 

assumption that η = 0 (Table 2). Specifically, BAMM attempts to obtain a consistent definition of E(t) 

at the root of the phylogeny that can be used to condition survival of the process by recursively passing 

down previously computed E(t) values from the tips to the root (Fig. 2). Hence, E(t) at any point in 

time is the extinction probability of a lineage at time t given the complete downstream (tipwards) shift 
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history. At internal nodes that differ in shift histories of their descendants (e.g., node nAB in Fig. 2, but 

not node nCD), the probabilities are multiplied together and used as initial E(t) inputs for the next 

(rootwards) branch segment. The advantage to this algorithm is that the extinction probability ER(t) at 

the root of the tree is conditioned on the observed shift history: the two E(t) values that one obtains at 

the root (one each for right and left descendant branches) after computing the likelihood can 

immediately be used to condition D(t) at the root on the probability that the process survives (eqn. 3). 

However, this approach entails several unusual assumptions and is best viewed as an approximation to 

the true likelihood, which is currently unknown. First, these calculations lead to strong topological 

conditioning of E(t): the likelihood is essentially conditioned on the existence of a subtree leading to 

the set of shifts that have been placed on the tree (Fig. 2b). Second, the model assumes that any extinct 

lineages that branched off of a focal branch prior to the rate shift (e.g., lineage X in Fig. 2c) have also 

undergone a rate shift at the same time. A comprehensive theoretical treatment of the assumptions that 

underlie these calculations is provided in the Supplementary Material (Sections 2.4 - 2.5). 

 We acknowledge that these calculations are approximate and were motivated by our 

observation that MEA-type calculations (as in split-BiSSE), with incomplete data augmentation, could 

incorrectly lead to infinite likelihoods; we demonstrate this point in the Appendix. Several other 

approaches use data augmentation to compute E(t), which avoids the more significant pathologies 

associated with the unconditioned likelihood expression. Morlon et al. (2011) compute the likelihood 

of a phylogeny with subclade shifts, conditioning on the survival of each subclade that has undergone a 

rate shift. Etienne and Haegeman (2012) compute the likelihood of a branching process where a single 

lineage shifts to a new diversity-dependent regime at some time ts. Their solution is to treat the E(t) 

calculations at the root of the tree as distinct from the E(t) terms used to solve the differential equations 

(eqns 1-2) along individual branches. Once the (unconditioned) likelihood of the data has been 
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computed, the probability that both crown lineages have survived is computed, given that one of the 

subclade lineages will undergo a rate shift at time ts if the process as a whole survives to time ts. It is 

this extinction probability that is used to condition the probability of the tree. However, the Etienne 

and Haegeman (2012) approach cannot easily be applied to scenarios where two or more rate shifts 

have been placed on the tree, and the proper approach to conditioning likelihoods under rate-shift 

models is currently an unresolved theoretical problem. 

 In contrast to the BAMM likelihood, the MEA implementation computes E(t) as a strict 

function of the parameters of the process at time t. In Fig. 2, for example, the MEA extinction 

probability on segment EA2 would be independent of the extinction probability used to compute the 

likelihood of segment EA1. Hence, MEA did not correctly implement the BAMM likelihood function 

for the comparisons that underlie their Fig. 2 and Fig. 3: their function differs from the BAMM 

likelihood in numerous respects, including the incorrect data augmentation scheme referenced above 

(Supplementary Material, section S2.4). The MEA and BAMM likelihoods should thus be expected to 

differ numerically for many reasons, but MEA attributed these differences exclusively to the effects of 

unobserved rate shifts.  

 

Summary: Likelihoods of Rate-Shift Models.  

 

 We agree with MEA that many outstanding theoretical issues remain to be resolved with rate-

shift models; we also agree that MEA have correctly identified an issue with most rate-shift models in 

that they ignore rate shifts on unobserved lineages (Table 2). If concerns about unobserved rate shifts 

are of practical significance, then the likelihood calculations implemented in many software programs 

will be similarly affected, including MEDUSA (Alfaro et al. 2009), Diversitree (FitzJohn 2012), DDD 
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(Etienne et al. 2012), and RPANDA (Morlon et al. 2016). However, the MEA likelihood function itself 

contains an important error -- an error that is shared with several other software implementations of 

rate-shift models. Specifically, the MEA likelihood is compromised by incorrect data augmentation 

(Table 2) that leads to invalid probabilities and potentially infinite likelihoods. The MEA likelihood 

expression is fundamentally different from the BAMM expression; differences include the nature of 

conditioning at the root and the handling of extinction probabilities at shift points and internal nodes 

(Fig. 2).  Thus, differences in the likelihood and E(t) terms for these implementations (e.g., Figs 2-3 

from MEA) do not demonstrate pathologies with BAMM that can be conclusively attributed to the 

effects of unobserved rate shifts on extinct lineages, as claimed by MEA.  

 

CLAIM 2. RATE SHIFTS ON UNOBSERVED LINEAGES: ARE THEY IMPORTANT? 

  

 The MEA likelihood is an important theoretical contribution for its clear discussion of rate 

shifts on unobserved lineages and their potential consequences for inference. However, as noted above, 

the likelihoods computed by BAMM and using MEA's independent implementation are not 

comparable and provide no information about the effects of unobserved rate shifts on the likelihood. It 

is unclear whether the computationally-intensive procedure suggested by MEA significantly enhances 

our ability to accurately model phylogenetic data, especially as the MEA likelihood calculations are 

many orders of magnitude slower than BAMM's calculations. In this section, we ask a simple question: 

does the Monte Carlo extinction simulator used by MEA yield extinction probabilities that are 

appreciably different from those computed under a constant-rate birth-death process that ignores rate 

shifts on extinct lineages?  
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 As justification for the importance of considering unobserved rate shifts, MEA provide a 

supplementary figure (MEA Figure S5) that illustrates substantial effects of unobserved rate shifts on 

the extinction probability. However, the MEA parameterizations involve rate shift frequencies that are 

much higher than the values obtained for their empirical analyses. MEA illustrate the effects of 

unobserved rate shifts for processes where rate shifts occur at rates from one-half to eight times the 

rate at which speciation events occur (e.g., minimum η = 0.5λ). For example, under MEA's illustrative 

parameterizations, a phylogeny of 100 extant tips would potentially have been generated under a 

process that included 50 or more rate shifts on the observed (extant) portion of the tree; their most 

extreme parameterizations would have such trees generated under processes that include many 

hundreds of rate shifts. We suspect that, when contemplating the effects of rate shifts or key 

innovations on phylogenetic diversification patterns, most empirical researchers are not 

conceptualizing a process where rate shifts outnumber the branches on which to place them. 

 The parameterizations considered by MEA far exceed values of η estimated in MEA's 

empirical analyses (Supplementary Figures S9 - S11). For example, across all empirical datasets they 

consider, the estimated ratio of η to λ is approximately 0.01 (and sometimes much lower), indicating 

that speciation events are 100x more likely  -- on average -- than rate-shift events. This result is 

intuitively appealing: rate shifts are rare, and BAMM in general does not infer many of them, at least 

under the most-commonly used prior expectation of 1.0 shifts per tree. If the rate shift frequency η 

approaches or exceeds the speciation rate λ, we would in general have low power to infer shifts, 

because inferential power is a function of the number of taxa in the shift regime. With η > λ, the mean 

number of taxa per shift regime becomes too small to infer shift regimes with confidence. 

 We assessed the extent to which the MEA rate-shift parameterizations matched the rate-shift 

frequencies from their empirical analyses, and we considered whether rate-shifts on unobserved/extinct 
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branches significantly affected the overall extinction probability of the clade. For each empirical 

dataset in MEA, we estimated rates of speciation and extinction under a constant-rate birth death 

process under three relative extinction rates: µ / λ = 0.1, 0.5, and 0.9. We then estimated the transition 

rate η from the rate-shift frequency ("event rate") sampled using rjMCMC with BAMM. As pointed 

out by MEA, estimates of η from the observed portion of a phylogeny may be biased relative to the 

true value of η; however, we found that, under MEA's parameterizations, estimates of η across the 

observed portion of the tree are highly correlated with the value that would be estimated if we knew 

the complete tree with extinct lineages and unobserved shifts (Fig. S8).      

 We used MEA's Monte Carlo extinction simulator to generate estimates of the extinction 

probabilities through time for each of the empirical datasets they considered. The Monte Carlo 

simulator estimates the extinction probability of an independent lineage where rate shifts to new 

parameters are permitted to occur with rate η. When a rate shift occurs, the simulator samples new 

parameters from prior distributions (e.g., these results are dependent on the prior assumptions about 

speciation and extinction rate distributions). We parameterized the priors on speciation and extinction 

rate distributions to have a mean equal to the inferred speciation rate for the tree, as in MEA's 

likelihood calculations. We parameterized estimates of η by selecting the 95th percentile of the 

distribution of estimates for each empirical tree; this is conservative, as using any lower quantile of this 

distribution (e.g., the median) would decrease the frequency of rate shifts relative to speciation. By 

deliberately overestimating the empirical shift rate η, we are maximizing the effects of any unobserved 

rate shifts on parameter estimates. 

 We then used MEA's simulator to generate the corresponding extinction-through-time curve 

using η = 0.5λ, the minimum non-zero ratio of transition-to-speciation events considered in MEA 

Figure S5. Finally, we computed the corresponding extinction-through-time probabilities for each 
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clade under the assumption of a simple constant-rate birth-death process. This latter probability is 

analytical (Kendall 1948; Bailey 1964; Raup 1985) and depends only on the age of the process and the 

diversification rates, as it assumes no rates shifts (η = 0).  

 Across all relative extinction rates, we find only a marginal contribution of unobserved/extinct 

rate shifts to the total extinction probability of the clade (Fig. 3; Fig. S11 - S12). The extinction 

trajectories using the empirically-parameterized Monte Carlo simulator are nearly identical to the 

analytical expectation assuming η = 0 (red vs. black lines). Under the smallest nonzero η 

parameterization considered by MEA (η = 0.5λ), there is a substantial effect with respect to the total 

extinction probability (Fig. 3; blue dotted lines). Figures S11-S12 illustrate the lack of effect that 

unobserved rate shifts have on the extinction probability across all empirical datasets from MEA's 

study. The equivalence of analytical and empirical extinction curves indicates that rate-shift models 

parameterized with biologically-relevant values of η are unlikely to experience a significant 

contribution of this term to the chance of extinction. However, as MEA show, rate-shift frequencies 

that are 100 - 1000 times greater than empirical estimates have the potential to compromise likelihood 

calculations unless accounted for through simulation. 

  We then looked in detail at the extinction probabilities computed by MEA for the cetacean 

dataset, which figures prominently in their assessment of BAMM's performance. This test is important, 

because MEA Figure 2 purports to show proportional error in extinction probabilities computed by 

BAMM relative to those estimated with their Monte Carlo simulator for this dataset. The authors 

attribute the difference in extinction probabilities to the effects of unobserved rate shifts. We compared 

the extinction probabilities computed at the root of the cetacean phylogeny exactly as computed by 

MEA, to the corresponding analytical probabilities under constant-rate birth-death process with no rate 

shifts (η = 0). The resulting probabilities are very highly correlated (Fig. 4a; r2 > 0.99) and suggest 
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minimal contribution of unobserved shifts to the overall extinction probability. This result further 

suggests that the demonstrable numerical discrepancies between likelihoods computed by BAMM and 

MEA (MEA Fig. 2-3) primarily reflect the combined influence of error in their likelihood equation 

(Appendix) as well as algorithmic differences between the two implementations (Supplementary 

Material S2.4). We also plotted the empirical transition rates for the cetaceans to illustrate the 

discrepancy in scale between these empirical rates and those used in MEA's illustrative curves (Fig. 

4b). Finally, we estimated the root extinction probabilities for the cetacean dataset as a function of the 

transition-to-speciation rate ratio (η / λ), under three relative extinction rates (Fig. 4c). These latter 

results indicate that the overall extinction probability is largely invariant across empirically-relevant 

parameterizations, but changes dramatically for the rate ratios considered by MEA.  

 

Summary: Unobserved Rate Shifts.  

 

 MEA claim that the likelihood function in BAMM (and other models: Table 2) is invalid 

because it ignores the effects of unobserved rate shifts. However, we find a marginal contribution of 

extinct rate shifts to the total extinction probability under biologically-plausible (empirically-

parameterized) values of the shift rate η. Our results indicate that the primary difference between 

extinction probabilities and likelihoods in BAMM versus MEA has little to do with the contribution of 

unobserved rate shifts (Fig. 4a), and much to do with fundamental differences in the way the 

likelihoods are computed (Fig. 2; Table 2). MEA likelihoods should differ from those computed by 

BAMM even if MEA likelihoods assume η = 0, due to MEA's incorrect implementation of the BAMM 

likelihood and theoretically-invalid root conditioning. Finally, if unobserved rate shifts are sufficiently 

frequent as to impact inference with formal rate shift models, then they would also affect inference 
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with all other diversification models that ignore rate shifts on unobserved lineages. In the unlikely 

possibility that true clade extinction probabilities are strongly influenced by unobserved rate shifts to 

high-extinction regimes, one cannot simply make the problem go away by using theoretically coherent 

models (e.g., BiSSE; constant-rate birth-death process) that assume an absence of such shifts. The 

effects of unobserved shifts would still be present in the data, and the use of simpler models that ignore 

their effects cannot remove the footprint of unobserved shifts from the data itself.     

 

CLAIM 3. IS THE CPP PRIOR MODEL IN BAMM INCOHERENT? 

  

 We largely agree with MEA that the prior model in BAMM deserves further exploration. MEA 

demonstrate that the compound Poisson process (CPP) model used in BAMM induces non-uniform 

probabilities for rate shifts on single branches, and that the model induces non-Poisson behavior in the 

posterior distribution of rate shifts (MEA Fig. 5). MEA claim that these theoretical concerns lead to 

statistical pathologies in practice, including prior sensitivity and unreliable diversification estimates. 

However, as we demonstrate in the following three sections, MEA did not provide valid evidence that 

BAMM performs poorly. Non-uniform, poorly-specified, and/or arbitrary priors are used widely in 

ecology and evolution, including phylogenetics and divergence time estimation (Pickett and Randle 

2005; Alfaro and Holder 2006; Brown et al. 2009; Heled and Drummond 2012; Heath and Moore 

2014). We contend that concerns about the shapes of the underlying prior distributions in BAMM, and 

other methods, are largely irrelevant unless they result in demonstrable pathologies in the shape of the 

posterior.   

 

CLAIM 4. IS PRIOR SENSITIVITY PROBLEMATIC FOR BAMM? 
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 MEA claim that the posterior distribution on the number of shifts obtained with BAMM shows 

extreme prior sensitivity, reflecting fundamental pathologies with the underlying CPP model. All 

Bayesian methods are characterized by some prior sensitivity, as the posterior is a function of both the 

likelihood and the prior. Even if the posterior on the number of shifts is prior-sensitive, we do not 

consider this result to be inherently problematic: if the data are sufficiently informative, the likelihood 

will shift the posterior away from the prior. Furthermore, prior sensitivity is not necessarily 

problematic if Bayes factors are used to assess the evidence in favor of rate variation, or if a 

conservative prior is used for analysis. Rabosky (2014) clearly demonstrated that use of liberal priors 

influenced the marginal posterior distribution of shifts, with minimal effect on rate estimates, for early 

versions of the BAMM software (see Fig. 3 and Fig. 10 from Rabosky 2014). MEA presented only the 

raw posterior distributions simulated with BAMM but did not use Bayes factors to assess whether the 

resulting inferences were dominated by the prior. MEA do not demonstrate that spurious inferences 

result from the purported prior sensitivity in BAMM; they merely re-document the prior sensitivity 

previously described by Rabosky (2014) in an early software release. Most published studies to date 

have used a conservative prior (γ = 1) that, even accepting MEA's results at face value, would not have 

resulted in the inference of spurious rate shifts. 

 However, results in MEA cannot be replicated with standard usage of BAMM v2.5. As detailed 

in Supplementary Material Section 2.3, MEA added an undocumented option to their BAMM control 

files that induces unpredictable behavior in the likelihood calculations (Supplementary Material; Fig. 

S2-S3); this setting is not visible to end users and MEA do not justify why this option was used in their 

article. Unfortunately, the setting used by MEA (referred to here as "random") does not replicate 

behaviors from previous releases of the program and has not been tested by us. Indeed, the likelihood 
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calculations in BAMM v2.3 (released March 8, 2015) and v2.4 (June 13, 2015) are nearly identical to 

the MEA likelihood (but with η  = 0) and used a similarly incorrect data augmentation scheme (see 

Supplementary Material sections S2.4 - S2.5); it is BAMM v2.5 that introduced the subtree 

conditioning shown in Fig. 2. In BAMM v2.3 and v2.4, E(t) is always computed using the current 

parameter values at time t, as in MEA. It is unclear why the "random" setting was used in MEA, as this 

choice deviates from the default setting for BAMM v2.5 and, to our knowledge, no other publications 

have used this setting. The only BAMM versions that would have enabled MEA to draw conclusions 

about the effects of unobserved rate shifts on the likelihood, given the implementation they used in 

their own their likelihood calculator, are BAMM v2.3 and v2.4; all other versions involve 

fundamentally different data augmentation with respect to E(t), as illustrated in Fig. 2. Given this 

unusual usage of BAMM v2.5, we assessed whether the recommended (and commonly used) version 

of the program demonstrates the same prior sensitivity reported by MEA.  

 We repeated all BAMM analyses using input files from MEA, both with the default and MEA 

("random") settings. All BAMM runs were performed across prior expectations of γ = 0.1, 0.5, 1, 2, 

and 10 expected shifts across the phylogeny, as in MEA. We then computed several statistics to 

describe BAMM's sensitivity to the prior on the number of rate shifts (γ). For the 14 empirical datasets 

considered by MEA (Figures S19 - S32 from their article), we simply plotted the mean of the marginal 

posterior distribution on the number of shifts for BAMM v2.5 with default settings versus BAMM with 

the MEA "random" option. We then computed, for each dataset, the variance in the posterior shift 

means across the five prior scenarios. If, for a given dataset, the posterior mean is relatively insensitive 

to the prior, we expect the variance to be small.  

 BAMM with the MEA "random" option shows much greater prior sensitivity than standard 

BAMM v2.5 (Fig. 5). The mean of the marginal posterior distribution on the number of shifts is 
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consistently higher with the MEA setting. Likewise, the variance in posterior means (across γ  = 0.1, 

0.5, 1, 2, and 10) is much lower with standard usage of BAMM v2.5 (Fig. 5b).  

 Despite the differences observed between "random" and standard BAMM v2.5 (Fig. 5), we do 

not consider prior sensitivity inherently problematic, unless it consistently leads to incorrect inference. 

We have previously advocated the use of Bayes factors for model selection with BAMM (Rabosky et 

al. 2014b; Mitchell and Rabosky 2016), which permits robust model selection that is less sensitive to 

the prior. MEA found that, with the "random" setting, the posterior is highly sensitive to the prior for 

constant-rate trees that lack rate shifts, suggesting that BAMM may be associated with a high Type I 

error rate if non-default priors are used (γ >> 1). We performed stepwise model selection for constant-

rate and empirical phylogenies using Bayes factors. Starting with the least complex model (e.g., fewest 

shifts), we tested whether a model with one additional shift fit the data significantly better. If so, we 

rejected the lower complexity model in favor of the model with the additional shift. The process is 

repeated until an incremental increase in model complexity does not yield a significant improvement in 

model fit. We considered Bayes factor evidence of 20 in favor of one model over another to be 

"significant", as in Rabosky et al (2014b) and May et al (2016). 

 When Bayes factors are used for model selection, there is virtually no tendency towards model 

overfitting regardless of whether standard BAMM or the MEA "random" option is used for analysis 

(Fig. 6a). Type I error rates for all prior parameterizations were less than 0.05, indicating that -- after 

appropriately controlling for the prior on the number of shifts -- BAMM does not tend to overfit the 

data. Similar results were observed for the empirical datasets. In general, the "random" setting leads to 

support for greater model complexity relative to standard BAMM (Fig. 6b), but the effect is weak to 

moderate.  
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Summary: Prior Sensitivity in BAMM.  

 

 With standard usage of BAMM v2.5, we cannot replicate MEA's finding of extreme prior 

sensitivity with respect to the number of rate shifts. Moreover, when BAMM is used with non-standard 

settings ("random") from MEA, proper model selection with Bayes factors does not lead to spurious 

inference of rate shifts. Most importantly, even if the posterior on the number of shifts is prior-

sensitive, we see no reason why this should preclude usage of the program, provided that researchers 

choose a conservative prior on the number of shifts. Most published results obtained with BAMM have 

used a prior of γ = 1; even under MEA's analytical protocol, results obtained with this prior are 

conservative. This value has always been the default setting in BAMM and specifies that a model with 

zero shifts is twice as likely (under the prior) as the most-probable model that includes rate shifts.   

 

CLAIM 5. DOES BAMM PROVIDE RELIABLE DIVERSIFICATION RATE ESTIMATES? 

 

 MEA report that BAMM performs poorly at estimating diversification rates across phylogenies 

simulated with rate shifts. They used a Poisson process model of rate variation to simulate trees, which 

is very similar to the true process modeled by BAMM. Extinction rates estimated with BAMM and 

other methods are generally poor (Davis et al. 2013, Rabosky 2015; but see Beaulieu and O'Meara 

(2015)), but MEA's results for speciation are surprising given the reasonable performance reported by 

Rabosky (2014). In particular, Rabosky (2014) found good performance of BAMM even when the 

inference model did not match the generating model.   

 

Do MEA's Analyses Have Sufficient Power to Justify their Conclusions? 
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  MEA's variable-rate trees are characterized by small total size and small tip-to-shift ratios (Fig. 

7), suggesting that the trees may contain low information content with respect to rate heterogeneity.  

MEA's variable-rate trees are restricted to sizes of 50 - 150 tips, and the median size of a shift regime 

is just a single tip. Fully 58% of MEA's trees did not include a shift regime with more than five tips 

(Fig. 7), and we believe most researchers would not expect any software program to reliably detect rate 

regimes that include five or fewer tips.  

 The prevalence of these small shift regimes (Fig. 7b) is due to a substantial ascertainment bias 

in MEA's simulation design that selected for trees with small numbers of rate shifts and/or rate shifts of 

small effect. Using MEA's simulation code with identical input parameters, we generated an equivalent 

dataset of 100 phylogenies but retained all trees with 2000 or fewer extant tips. It is clear that trees 

selected by MEA represent a small fraction of the simulation outcomes produced under their 

parameterization: the mean tree size in the dataset they analyzed contained merely 89 extant tips, but 

the mean we obtained from simulations under their parameters (without restrictions) was 342 (Fig. 7c). 

The consequences of this ascertainment bias are clear when we plot the number of tips as a function of 

the number of shifts present in each simulated tree (Fig. 7c): MEA selected for a set of trees that are 

unusual, relative to the Poisson process expectation, in that (i) they contain a small number of tips 

overall, (ii) they contain fewer shifts, and (iii) rate shifts tend to be of small effect, such that they lead 

to clades with small numbers of extant tips (Fig. 7b). Rate shifts of large effect, no matter how 

common under the MEA parameterization, tend to generate trees that exceed the 150 taxon upper 

bound that they imposed on their simulations and would have generally been excluded from their 

analyses (e.g., Fig. 7c: filled circles). Section 5.1 in the Supplementary Material that accompanies this 

article describes these and other ascertainment biases in detail. 
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 If BAMM requires reasonable numbers of tips in a rate regime in order to detect a shift (e.g., n 

> 10), the method would have been unable to infer rate heterogeneity for most of their simulated trees.  

We tested the information content associated with each rate shift in the MEA dataset to determine 

whether it would have been possible, in principle, to infer rate shifts from these data. For each rate 

regime in the MEA variable-rates tree set, we computed the exact likelihood of the rate regime under 

the true parameters in MEA's generating model. We compared this likelihood to the corresponding 

likelihood of the same rate regime under the parameter values we would estimate for the whole tree 

under a constant-rate birth-death process. Thus, for each of the 100 variable rates phylogenies in MEA, 

we estimated λ and µ under a constant-rate birth death process. Let τS,i denote the subtree from tree τ 

containing all branch segments and nodes to which the i'th rate regime has been mapped, as illustrated 

in Fig. 7a. The information content ∆LogLi associated with this rate regime is 

 

∆LogLi = log L τ S,i |θTRUE( ) − log L τ S ,i |θCRBD( )   

 

where L(τS,i | θTRUE ) is the likelihood of the corresponding subtree under the true parameters in the 

generating model and θCRBD denotes the corresponding speciation and extinction rates obtained for the 

entire tree under a two-parameter, constant-rate birth-death (CRBD) process. This statistic tells us how 

much information a given shift regime has relative to the information we would obtain from simply 

computing the likelihood of the shift regime under the whole-tree estimates for speciation and 

extinction (e.g., assuming no rate variation across the tree). The likelihood is a summary of the 

information in the data. Consequently, if a given rate regime has any information with which it can be 

inferred, ∆LogL must be greater than zero. If ∆LogL < 0, the rate regime is more probable under a 

simple whole-tree estimate of diversification rates. Such negative values are possible because we are 
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not optimizing parameters for each shift regime; for comparison, we perform such optimization in the 

Supplementary Material and show that it yields virtually identical results but with all ∆LogL > 0. 

 It is not sufficient for ∆LogL to be greater than zero, because the parameters and location of the 

shift (θTRUE ) are fixed exactly to their true values in the calculation above (e.g., ∆LogL is a difference 

in likelihoods between two nested models with different numbers of parameters). Hence, ∆LogL must 

be somewhat greater than 0 in order to conclude that rate variation is present, a fact that becomes 

obvious when we consider this analysis in an AIC framework. The expression for AIC in terms of the 

difference in likelihoods (∆LogL) and the number of parameters k required to fit a shift can be 

rearranged to give ∆LogL = S/2 + k, where S is the ∆AIC score that we would require to accept the 

more complex model (e.g., a model with an additional shift). If we interpret ∆AIC evidence greater 

than or equal to zero as supporting the more complex model, the minimum possible ∆LogL score that 

will enable us to infer the rate shift is 3.0 with k = 3; k = 3 corresponds to the number of parameters 

associated with each shift in MEA's generating process (parameters: shift location, λ, µ). Any stricter 

AIC threshold, including the generally-accepted value of 2.0 as well as all AICc-type modifications, 

can only increase the requisite ∆LogL criterion above this minimal estimate.  

 We computed ∆LogL for all 435 rate shifts present in the 100 trees included in the MEA 

variable rates dataset. We computed likelihoods following MEA's approach of accounting for 

unobserved rate shifts, using their Monte Carlo simulator with the exact parameters that were used in 

the generating model (λ prior mean = 0.15; µ prior mean = 0.05; η = 0.006). For comparison, we also 

computed the likelihood of each rate shift under the analytical birth-death process (η = 0; no Monte 

Carlo simulation of extinction probabilities). If ∆LogL values with the fast analytical approximation 

are approximately identical to those computed while accounting for unobserved rate shifts, there is 

little reason in practice to adopt the more computationally-intensive inference scheme. 
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 We find that there is virtually no information content associated with the vast majority of rate 

shifts in the MEA variable rates dataset. Of 435 rate shifts across 100 phylogenies, 411 have ∆LogL < 

3 (Fig. 8a). We find it difficult to imagine that BAMM -- or any other method -- would be able to infer 

rate shifts in any scenario where ∆LogL < 3. Indeed, given that BAMM is sampling from prior 

distributions on all parameters, we predict that ∆LogL would need to be considerably higher in order to 

detect a rate shift. Only 14 shifts, across the entire MEA set of 100 trees, have ∆LogL > 5. Importantly, 

we find that likelihoods computed with MEA's computationally-intensive Monte Carlo simulator are 

nearly identical to those computed under the fast analytical approximation (Fig. 8b), consistent with 

results presented in a previous section (Fig. 3 - 4). We performed a second analysis where we 

optimized rate parameters for every shift regime, thus substituting the maximum likelihood estimates 

of θ for θTRUE. Optimizing parameters in this fashion is a simple check that enables us to ensure that 

there were no errors in the recording of parameter values in MEA's data files and also accounts for 

ascertainment biases and other factors that could shift the ML parameter estimates for each rate regime 

away from their true values. This procedure had minimal effect on the distribution of ∆LogL, and only 

17 shifts had ∆LogL > 5 with this approach (Supplementary Material; Fig. S14).  

 These results demonstrate that MEA's "variable rates" phylogenies contain, with few 

exceptions, the same amount of information as trees produced by a constant-rate birth-death process. If 

BAMM performs well, we should expect that (i) the program should generally not recover evidence for 

rate variation for most phylogenies in this dataset; (ii) that BAMM estimates of rates for low-power 

trees should converge on the tree-wide average rate; and (iii) that BAMM should be able to recover 

branch-specific variation in diversification rates for the few trees where the information content is 

sufficient for the method to infer rate heterogeneity. The simple power calculations performed here 

suggest that MEA's simulated datasets should not be used to study within-tree patterns of 
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diversification rate variation: across the majority of their trees, there is minimal information that can be 

used to infer rate heterogeneity.  

  

Assessment of BAMM rate reliability 

 

 We repeated all BAMM analyses of MEA's variable rates trees but we constrained BAMM to 

be identical to the generating model (e.g., within-regime rates assumed to be constant through time). 

This constraint also serves to minimize the impact of well-known ascertainment biases that 

compromise temporal analyses of diversification when trees are selected non-randomly with respect to 

total size (Phillimore and Price 2008); note again that MEA's tree set contains substantial size-related 

ascertainment bias (Fig. 7c; Supplementary Information S5.1). We summarized BAMM estimates of 

evolutionary rates by branch and by rate regime. In the former analysis, as in MEA, we tested whether 

branch-specific estimates of diversification rates were correlated with the true values. We also tested 

whether mean BAMM rates for rate regimes were correlated with the true values across the full dataset. 

We present all analyses with respect to the theoretical information content ∆LogL associated with each 

rate shift. Corresponding results for BAMM with time-varying rate regimes are very similar and are 

provided in the Supplementary Material (Figs S15-S18). 

 Figure 9 (top row) illustrates the correlation between true speciation rates and the 

corresponding branch-specific estimates from BAMM, as a function of maximum ∆LogL (information 

content) associated with the tree. Each data point in Figure 9 is the correlation for a single tree in 

MEA's dataset; the max ∆LogL for each tree is the largest ∆LogL value observed across all shifts in a 

given tree (e.g., max ∆LogL = 2 implies that all shifts in the tree have ∆LogL ≤ 2). It is critical to note 

that if BAMM infers no rate shifts, branch-specific correlations and regression slopes will be zero (Fig. 
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10a), regardless of the accuracy of the BAMM estimates. Across all trees and γ priors, the mean 

Pearson correlation between branch-specific BAMM speciation estimates and true rates was 0.255. 

However, this value is largely driven by lack of power associated with low ∆LogL trees. When we 

drop the 77% of all MEA trees where the most-inferable shift had ∆LogL < 3 and consider only the 

remaining 23 informative trees, we find that the mean correlation rises to 0.75. If we restrict this even 

further to the 14 trees with maximum ∆LogL > 5, we find a mean correlation of 0.92. These results are 

virtually identical when the "random" option is used, as in MEA (2nd row from top). With "random", 

the mean correlations across all trees with ∆LogL > 3 and ∆LogL > 5 are 0.75 and 0.93, respectively. 

Interestingly, speciation rate correlations are both consistent and robust across all prior 

parameterizations on γ (columns in Fig. 9). For the 14 trees with a maximum ∆LogL > 5, the branch-

by-branch correlation in speciation rates was effectively independent of the prior: for the "random" 

option used by MEA, the five prior scenarios (γ = 0.1, 0.5, 1.0, 2, 10) had mean correlations of 0.88, 

0.93, 0.93, 0.93, and 0.93, respectively. Corresponding values with BAMM v2.5 defaults were 0.93, 

0.91, 0.93, 0.93, and 0.93. For low-power trees with ∆LogL < 3, within-tree speciation correlations are 

close to zero (mean correlation across all priors and analysis options = 0.111), as expected when 

BAMM fails to infer rate variation (Fig. 10a). Extinction rates are poorly estimated with trees of this 

size (Fig. 9, row 3).  

 The Bayes factor evidence for rate heterogeneity in each of MEA's trees is a function of the 

information content (Fig. 9, row 4). Regardless of the prior on the number of shifts, only a single tree 

with max ∆LogL < 8 was observed to show significant rate variation using Bayes factors. For the nine 

trees with max ∆LogL > 8, seven had significant Bayes factor evidence for rate variation and this result 

was consistent across all priors. These results are identical regardless of whether BAMM v2.5 defaults 

or the MEA "random" settings are used.  
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  Figure 10 illustrates the consequences of MEA's low-power design for the regression analyses 

presented in their paper. For most of MEA's variable rates phylogenies, there is almost no information 

with which to infer rate shifts, leading to regression slopes that are approximately zero even when the 

overall tree-wide rates are estimated accurately (Fig. 10a). However, for trees with sufficient 

information to infer shifts, BAMM is able to infer branch-specific rates with considerable accuracy 

(Fig. 10b, 10c). Indeed, for all phylogenies with significant Bayes factor evidence for rate 

heterogeneity, the correlation between true and BAMM-estimated branch rates is very high (Fig. 10c).   

  For each tree in the MEA variable rates dataset, we computed the mean proportional accuracy 

in branch-specific speciation estimates as well as the corresponding regression slopes for branch rates 

(as in Fig. 10b). We found mean rate accuracy -- the ratio of inferred-to-true speciation rates -- was 

close to unity, especially for the 8 phylogenies where BAMM detected strong evidence for rate 

heterogeneity (Fig. 11a). MEA conclude that the average slope for branch-specific estimates of rates 

(e.g., Fig. 10b) is zero and that estimated rates are uncorrelated with their true values. This result is 

strictly the result of assessing branch-specific rate accuracy across their set of low-power trees, using 

regression statistics that would perform poorly if BAMM failed to identify rate shifts (Fig. 10). The 

mean branch-specific slope was 0.05 for the 92 trees where BAMM did not find strong evidence for 

rate variation (BF < 20), but BAMM performed well at estimating branch-specific rates across the 

remaining 8 trees (Fig. 11b), where the mean branch slope was 1.19. For the 92 trees where BAMM 

failed to detect strong evidence for rate variation, the BAMM-estimated mean rates across the entire 

tree are very highly correlated with values estimated under a simple constant-rate birth-death process 

(Fig. 11c, open circles; regression slope = 0.89, r2 = 0.987). A clear picture thus emerges across the 

MEA "variable rates" dataset: when BAMM has little power to infer rate variation, speciation rate 

estimates are similar to those that would be obtained from a constant-rate birth-death process (Fig. 11c, 



 35

open circles). If BAMM has power to detect rate variation, branch-specific variation in rates is inferred 

with reasonable accuracy (Fig. 9-11).  

 A similar picture of speciation rate accuracy emerges from considering mean estimates of rates 

for each shift regime relative to their true values (Fig. 12). Across all rate regimes, the overall 

correlation between true and BAMM-estimated rates is positive but relatively poor (Fig. 12a). 

However, when we include only root regimes and shift regimes with ∆LogL > 3, we find that BAMM 

estimates are reasonably correlated with the true values. Across all 4374 branches from the 23 

phylogenies with maximum ∆LogL > 3, we find a strong correlation between true and BAMM-

estimated rates (Fig. 12c). Finally, although branch-specific variation in extinction rates is poorly 

estimated (Fig. 9), the whole-tree estimates recovered by BAMM are at least as accurate as one would 

obtain from a simple constant-rate birth-death process (Fig. S23 - S24). 

 

Summary: Diversification Rate Estimates with BAMM.  

 

 The overwhelming majority of variable rates phylogenies from MEA are approximately 

identical to trees generated from a constant-rate birth-death process. There is minimal information 

available with which BAMM, or any other method, could infer rate heterogeneity (Fig. 8), due to the 

small number of tips in each rate regime (Fig. 7) and the proportionally small changes in rates for rate 

shifts. MEA's results are thus a simple consequence of low statistical power: when BAMM does not 

detect rate variation, the summary statistics used in MEA's assessment are expected to imply poor 

performance, even when the tree-wide rate is estimated with high accuracy (Fig. 10). Despite the 

limitations of MEA's simulation design, we find that BAMM does quite well at inferring 

diversification rates for those regimes that are -- in principle -- inferable (Figs. 9 - 12). For sufficiently 
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informative datasets, we find virtually identical results across a broad range of prior parameterizations 

(Fig. 9, columns) as well as for different analysis modes (e.g., BAMM defaults vs. "random"; time-

varying vs. time-constant regimes: Fig. 9; Figs S15 - S24).  

  

HOW RELIABLE ARE PREVIOUS VERSIONS OF BAMM? 

 Several aspects of the BAMM calculations differ between BAMM v2.5 and earlier releases of 

the program (Supplementary Material S2.5). The initial release of BAMM (Rabosky 2014) was 

accompanied by extensive performance assessment, but there is yet no published analysis of the extent 

to which inferences vary across previously released versions of the software. We tested the reliability 

of inferences about evolutionary rates and the number of rate shifts across four BAMM versions (v1.0, 

v2.0, v2.3.1, and v2.5) that capture the most significant changes to the software. Given that MEA's 

simulated rate-variable phylogenies contain minimal information with which to infer among-lineage 

rate variation, we simulated a new set of phylogenies under a forward-time Poisson process with rate 

shifts. We did not impose strong constraints on tree size, to avoid ascertainment biases characteristic of 

MEA's variable-rates dataset (Supplementary Material Section S5.1). We simulated 200 phylogenies 

under each of two shift frequencies (η = 0.01; η = 0.001) and analyzed each dataset with 3 model 

priors and 4 BAMM versions, for 4800 total BAMM analyses. A complete description of these 

simulations and associated analyses is provided in the Supplementary Material (Section S6). 

 For the most widely-used prior parameterization (γ = 1), we found virtually no differences in 

performance across all four BAMM versions (Fig. 13; Fig. S25 - S30), despite significant differences 

in the underlying likelihood calculations. Across all simulation and analysis conditions, speciation 

rates estimated with BAMM are highly correlated with the true rates (Fig. 13; Fig. S25 - S28).  

Extinction rate estimates are reasonably correlated with the true values under realistic simulation 
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conditions, but as expected, these estimates are much less accurate than those for speciation (Fig. 13c) 

and extinction estimates are less accurate when rate shifts are common (Fig. S25-S28). We find no 

evidence that the inferred number of shifts differs appreciably across BAMM versions, at least for the 

most commonly-used prior parameterizations (Fig. S29 - S30). By all metrics we have considered, 

BAMM v2.5 yields rate estimates that are more accurate than previous versions of BAMM, including a 

version (v2.3.1) where the likelihood was computed using the same algorithm used by MEA (albeit 

with η = 0). These results demonstrate that, in general, results obtained with earlier versions of BAMM 

are expected to be similar across all major releases of the software, despite numerous differences 

between these versions. Moreover, this assessment conclusively rejects MEA's claim that BAMM 

estimates of diversification rate parameters are unreliable. Such a conclusion is only possible when a 

select set of performance metrics is applied to phylogenies for which it is not theoretically possible to 

infer rate variation. 

 

CONCLUSIONS 

 Moore et al (2016) concluded that BAMM cannot correctly estimate diversification rates, and 

that the posterior distribution of rate shifts shows extreme prior sensitivity. They attribute these 

statistical pathologies to an incorrect likelihood function and to a problematic CPP prior model on the 

number of rate shift events. Our reassessment of the theory and results that underlie their article 

demonstrate that these conclusions are not justified. First, MEA claim that BAMM's likelihood 

function is incorrect on theoretical grounds, as it ignores the effects of unobserved rate shifts. We have 

shown that their assessment was compromised by their use of an invalid likelihood function that, by 

allowing probabilities to exceed unity, violates the key axiom of probability theory. In addition, 

numerical discrepancies between BAMM and MEA likelihoods (MEA Figures 2 - 3) are a function of 
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multiple algorithmic differences that are not related to unobserved rate shifts (Supplementary Material 

S2.4). Second, we have demonstrated that unobserved rate shifts are unlikely to have relevance in 

biologically-plausible regions of parameter space. Third, we found no evidence that the prior model in 

BAMM leads to inference problems, regardless of BAMM version or usage mode. BAMM is generally 

conservative, especially under the most widely used prior parameterizations and/or when proper 

Bayesian model selection is performed. Fourth, BAMM performs well across all regions of parameter 

space we have explored thus far. MEA's conclusion that BAMM rate estimates are unreliable is based 

on a set of low-power analyses for which it would not have been possible for BAMM, or any other 

method, to infer diversification rate variation. Finally, our assessment of a much richer set of simulated 

datasets reveals that BAMM infers diversification rates - particularly speciation rates - with high 

accuracy. We demonstrate that BAMM's performance has been remarkably consistent across all major 

releases of the software. 

 We appreciate MEA's clear theoretical discussion of rate shifts on extinct/unobserved lineages, 

but we question the relevance and practicality of accommodating these fundamentally unknown 

quantities into empirical inferences. The computationally-intensive approach used by MEA is 

influenced by prior assumptions regarding the rate distributions for unobserved rate shifts, a quantity 

that -- by definition -- is not observed. The MEA approach is thus integrating over unknown unknowns 

and at great computational cost. Moreover, if the marginal effects of unobserved rate shifts on 

extinction probabilities (e.g., Fig. 3, Fig. 4a) lead to biased inference, then surely the arbitrary 

assumptions about the distributions of rates from which unobserved shift regimes are drawn must also 

matter.   

 Leaving these theoretical concerns aside, we find no evidence that accommodating rate shifts 

on extinct lineages actually contributes to our ability to model phylogenetic data with rate-shift models 
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(Figs 3, 4). Under the exact parameters used in MEA's variable-rate simulations, we find that the 

Monte Carlo likelihoods for rate shift regimes are virtually identical to those obtained from the orders-

of-magnitude faster analytical approximation that ignores unobserved shifts (Fig. 8b). By focusing on 

largely-irrelevant quantities that cannot be accommodated by any modeling framework, we are 

concerned that MEA's forceful prohibitions serve as a distraction from many important methodological 

issues in macroevolutionary inference. These include the development of methods for the analysis of 

combined paleontological and molecular phylogenetic datasets (Didier et al. 2012), for accommodating 

protracted or ephemeral speciation processes (Etienne and Rosindell 2012; Rosenblum et al. 2012; 

Dynesius and Jansson 2013), and for teasing apart the relative importance of diversity-dependent and 

diversity-independent factors that regulate clade dynamics (Etienne and Haegemann 2012; Rabosky 

2013; Manceau et al. 2015; Silvestro et al. 2015).  

 Macroevolutionary modeling is a dynamic discipline with a rapidly growing data landscape 

involving phylogenies, fossils, phenotypes, and ecologies. We believe that there is tremendous scope 

for improvements to existing methods and also that the field offers great opportunities for developing 

new methods with which to address novel conceptual challenges. Innovating at the frontiers of science 

has frequently involved building upon valid insights from imperfect tools. We remain optimistic that 

the imperfect and approximate inference tools currently at our disposal have revealed and will continue 

to reveal fundamental insights into the processes that generate and maintain biological diversity.   
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SUPPLEMENTARY MATERIAL 

 

Supplementary material, including data files and computer code, can be found in the Dryad data 

repository at http://datadryad.org, doi:10.5061/dryad.36g21. All Supplementary figures and text are in 

the document SupplementaryMaterial.pdf that accompanies the Dryad submission.  
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FIGURE CAPTIONS 

 

Figure 1. Probabilities of hypothetical lineage histories under MEA and BAMM-type algorithms for 

computing likelihoods. Top row, a - c: probability of a single lineage history, where a lineage begins at 

time t0 with parameters (λ0, µ0) and shifts to new parameters (λ1, µ1) at time ts. The probability of the 

lineage history is shown as a function of the speciation rate λ0 (b) and extinction rate (c), with all other 

parameters fixed to the values indicated in the figure. In (b) and (c), MEA1 and MEA2 refer to 

independent implementations of the MEA probability; MEA1 uses the likelihood calculator distributed 

with MEA, and MEA2 is an independent implementation of the same equations using a different 

numerical integration method. Bottom row, d - f: Probability of a four-taxon tree with two independent 

rate shifts to identical parameter values. MEA probability (dashed line) is the likelihood obtained with 

MEA's Monte Carlo likelihood calculator after conditioning the likelihood on the observed speciation 

events. In all cases, high extinction probabilities at the beginning of the process lead to invalid and 

potentially infinite probabilities under MEA's incorrect conditioning scheme for E(t).  

 

Figure 2. Likelihood calculations under BAMM v2.5, illustrated on a hypothetical phylogeny with a 

single rate shift (on branch A). Due to rate shift, branch segment EA1 has rate parameters that are 

distinct from the rest of the tree. Likelihoods are computed from the tips to the root by passing 

previously computed extinction probabilities E(t) down the tree. Thus, the E(t) component of the 

likelihood calculation on branch segment EA2 is initialized with the value previously computed on EA1. 

When a node is reached, the extinction probabilities E(t) are multiplied together if the nodes differ in 

their downstream shift histories (node nAB). Hence, the initial value for the EAB segment is the product 



 47

of extinction probabilities on EA2 and EB. This multiplication does not occur at node nCD, because the 

lineages have identical shift histories. This algorithm for computing the likelihood entails two 

assumptions (b, c). The likelihood of the tree as a whole is effectively conditioned on the existence of a 

subtree leading to the mapped rate shifts (bold branches; b). Second, any extinct lineages that branched 

off before the rate shift but after the most-recent surviving node (nAB), are also assumed to have 

undergone a rate shift (e.g., extinct lineage X in c). These unusual assumptions were incorporated into 

BAMM v2.5 pending the development of a theoretically coherent method for computing E(t) with 

data-augmented histories (Table 2) and avoid the infinite likelihood trap of several other approaches 

(Appendix; Figure 1).    

 

 

Figure 3. The chance of lineage extinction as a function of relative time from the root node for four 

empirical datasets analyzed by MEA (columns) and under three different relative extinction rates 

(rows). When rate shifts are rare relative to speciation events, the effect of unobserved rate shifts on the 

extinction probability is negligible. Red (solid) lines shows cumulative chance of extinction estimated 

using MEA's Monte Carlo simulator and parameterized with empirical estimates of the rate shift 

frequency (transition rate) η. Black (dashed) line shows the corresponding extinction probability under 

a simple constant-rate birth-death (CRBD) process. Blue line (dotted) shows the change in the 

extinction probability under the minimum nonzero rate-shift frequency illustrated by MEA (their Fig. 

S5). MEA are correct that unobserved rate shifts can influence the extinction probability, but the 

parameter space over which the effect becomes important involves rate shift frequencies that are 

approximately 100-1000x greater than for the empirical datasets considered in their article. 
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Figure 4. Rate shifts on unobserved lineages have a marginal effect on likelihood calculations when 

the transition rate η is low relative to speciation. (a) Estimates of the extinction probability E(t) at the 

root of the cetacean phylogeny estimated using MEA's Monte Carlo simulator and compared to the 

corresponding analytical E(t) probabilities from simple constant-rate birth-death (CRBD) process. 

Each point represents the extinction probability for a set of root parameters sampled from the posterior 

simulated with BAMM, exactly as for MEA Fig. 2. (b) Ratios of transition rates (η) to speciation rates 

for the cetacean dataset and compared to the five illustrative parameterizations considered by MEA 

(their Fig. S5); note logarithmic scale for rates. (c) The extinction probability at the root of the 

cetacean phylogeny for a constant-rate diversification process under three relative extinction scenarios 

(ε), as a function of the transition-to-speciation rate ratio. When transition rates are low relative to 

speciation, as for the cetaceans, the extinction probabilities are similar to the corresponding constant-

rate estimates (open circles), which assume η = 0. The strongest effects are observed when rate shifts 

are approximately as frequent or more frequent than speciation events; we expect that rate shifts in 

such scenarios are difficult to detect. 

 

Figure 5. The posterior distribution of the number of rate shifts is much more sensitive to the prior 

when the "random" option activated by MEA is used for analysis, relative to BAMM v2.5 default 

values. (a) Means of the marginal posterior distributions on the number of shifts across all datasets and 

priors considered by MEA as analyzed with BAMM defaults (x-axis) and as used by MEA (y-axis). 

The mean number of shifts is biased upwards with MEA's analysis configuration. (b) The variance in 

mean number of shifts for 14 empirical datasets across 5 prior parameterizations considered by MEA, 

estimated under BAMM v2.5 default settings (open circles) and as used by MEA (solid circles). 

Datasets are abbreviated by first three letters in names used by MEA. 
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Figure 6. Model selection with Bayes factors is generally robust to choice of model prior, regardless of 

how BAMM v2.5 is used. a) Type I error rates for the MEA constant-rate phylogenies are low 

regardless of whether BAMM is used with v2.5 defaults (open circles) or MEA settings (filled circles). 

Type I error rate is the proportion of simulated trees where Bayes factor comparisons led to rejection 

of the true (zero shift) model. (b) Best model for 14 empirical datasets considered by MEA with γ = 1 

(expected number of shifts); (c) Best model for empirical datasets with γ = 10. Regardless of the 

posterior on the number of shifts, Bayes factors generally favor models with zero or one shift for this 

set of phylogenies. A single dataset was found to have large numbers of shifts (Ericaceae; 7 / 18 for 

BAMM v2.5 / MEA settings), but this was also the largest dataset and includes 4,500 species (450 

sampled in the phylogeny). 

 

Figure 7.  (a) Phylogeny illustrating three rate regimes: r1 (bold lines), r2, and the root regime (rR). 

Regimes rR and r1 have three extant tips, and r2 includes a single tip. (b) Numbers of tips in the largest 

and second-largest rate regimes for each tree in MEA's variable-rate dataset. In general, trees are 

dominated by a single rate regime (usually the root regime); the second-largest regime included fewer 

than 20 tips in 80% of trees (< 5 tips in 58% of trees). BAMM and other methods would be unlikely to 

detect rate variation in phylogenies where most rate shifts lead to very small subclades, as in this 

dataset. (c) MEA's variable rate simulations are comprised by ascertainment bias, as they discarded all 

simulations that did not meet highly restrictive size criteria (gray polygon). A comparable dataset of 

100 phylogenies simulated using their code and parameter values without imposing this arbitrary 

criterion demonstrates that tree sizes are on average much larger and contain far more shifts, with 

higher information content, than the trees in their dataset (true mean: 342 tips; MEA dataset mean: 89 
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tips). Panel illustrates the relationship between tree size (extant tips) and the number of shifts in each 

tree; all trees identified with filled circles would have been rejected under MEA's acceptance criteria. 

This sampling bias generates phylogenies that are dominated by excessively small rate regimes (panel 

b) relative to the Poisson generating process described in their article 

 

Figure 8. Information content for all rate shifts in the MEA variable-rates dataset. ∆LogL denotes the 

difference in likelihoods for each rate shift under the true parameter values relative to the likelihood for 

the rate shift assuming that the entire tree has a single invariant rate of speciation and extinction. In an 

AIC framework, a rate shift is unlikely to be detectable unless ∆LogL is somewhat greater than 3. (a) 

Frequency distribution of ∆LogL for all 435 rate shifts in the MEA dataset, where all likelihoods were 

computed with MEA's Monte Carlo simulator to account for unobserved rate shifts. The vast majority 

(95%) of all rate shifts in the MEA dataset contain virtually no information and probably cannot be 

inferred by any method. (b) ∆LogL values computed using MEA's Monte Carlo simulator are virtually 

identical to ∆LogL values computed analytically assuming η = 0; integrating over prior distributions 

on unobserved rate shifts thus contributes little to our ability to model the data. (c) ∆LogL values for 

the best (most information-rich; most "inferrable") shift in each of the 100 trees in the MEA dataset. 

The vast majority of trees have effectively no information with which to infer rate heterogeneity (gray 

zone). Given the contribution of the prior and the stochasticity inherent in MCMC, it is likely that 

∆LogL = 3 is a conservative estimate of information required to infer a shift in the BAMM framework. 

For the Monte Carlo likelihood estimates, transition rates and speciation/extinction priors were set to 

the exact values used by MEA in the generating model.   
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Figure 9. Summary attributes of BAMM analysis of all trees in MEA "variable rates" dataset analyzed 

under three priors (columns), plotted by the information content in each tree. Information content for 

each tree is the maximum ∆LogL value across all shifts occurring in the tree. Each tree is represented 

by a single point in each plot. Row 1 (from top): Pearson correlations between branch-specific BAMM 

estimates of speciation rates and the true rates. Speciation rates were estimated as the mean of the 

marginal posterior distribution for the branch, as in MEA. BAMM-estimated rates are highly 

correlated with the true rates for most trees with sufficient information to infer rate shifts (max ∆LogL 

> 3). Row 2: correlations between branch-specific BAMM estimates of speciation rates and true rates, 

using the "random" setting for combineExtinctionAtNodes (as in MEA). Results are virtually identical 

to those obtained with BAMM defaults (top row). Row 3: correlations between branch-specific 

extinction rate estimates and true values; extinction estimates are generally poor across this dataset, 

potentially reflecting the low information content of small rate regimes for this parameter. Row 4: 

Bayes factor evidence for rate heterogeneity as a function of the maximum ∆LogL for each phylogeny. 

Bayes factors were computed as the evidence favoring a one-shift model (M1) relative to a zero-shift 

model (M0); dotted line indicates "significant" Bayes factor evidence for rate heterogeneity (BF = 20). 

For trees with maximum ∆LogL < 3 (77 of 100 trees), there is generally no evidence for rate 

heterogeneity, regardless of the prior. Inferences are highly concordant across 100-fold differences in 

the mean of the prior on the expected number of rate shifts (columns).  

 

Figure 10. Low statistical power confounds MEA's assessment of BAMM speciation rate reliability. 

(a) Regression analysis of branch-specific speciation rate estimates as a function of the true rates for 

the first tree in MEA's variable-rates dataset, which is characterized by low information content 

(∆LogL max = 0.55; only 1 or 2 tips per rate shift). Slope of fitted regression line is zero (dotted line). 
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However, BAMM accurately estimates the speciation rate shared by the vast majority of branches: 

across 160 of 166 branches in the root rate regime, we observe λTRUE = 0.09 versus mean λBAMM = 0.10. 

Points have been jittered to reduce overplotting. For phylogenies that lack detectable rate variation, the 

slopes from such regression analyses are expected to equal zero, even when the overall tree-wide rate 

is estimated with high accuracy. (b) Comparable analysis for a tree with high information content (tree 

26). Slope of fitted regression line is 0.88 and r2 = 0.934. (c) Relationship between within-tree 

correlation in branch-specific speciation rates as a function of the Bayes factor evidence for rate 

heterogeneity in the tree. Bayes factors were computed as the evidence favoring a one-shift model (M1) 

relative to a zero-shift model (M0); dotted line indicates "significant" Bayes factor evidence for rate 

heterogeneity (BF = 20).    

 

Figure 11. Branch-specific estimates of speciation rates obtained with BAMM are more accurate when 

trees contain evidence for rate variation (a) Proportional accuracy of branch-specific speciation rate 

estimates as a function of the Bayes factor evidence for rate heterogeneity in the tree; each point is the 

tree-wide mean value. Filled circles denote trees with strong evidence (BF > 20) for rate shifts. (b) 

Within-tree regression slopes for branch-specific speciation rates; mean slope for trees where 

significant heterogeneity was detected (filled circles) is 1.19. (c) For trees lacking a strong signal of 

rate heterogeneity, BAMM estimates of speciation rates are highly correlated with the overall tree-

wide rate that would be estimated under a constant-rate birth-death process. Bayes factors in (a) and 

(b) were computed as the evidence favoring a one-shift model (M1) relative to a zero-shift model (M0); 

dotted line indicates "significant" Bayes factor evidence for rate heterogeneity (BF = 20). Analyses 

shown here performed with a prior of γ = 1 and default BAMM v2.5 settings, but virtually identical 

results are obtained with other priors and with the "random" setting activated by MEA (Figs S19 - S23).  
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Figure 12. (a) Relationship between true speciation rates and BAMM-estimated rates across all 535 

rate regimes in the MEA variable-rates dataset, estimated under three different prior parameterizations 

(colors; γ = 0.1, 1, and 10). Dashed line is fitted regression line. Blue line denotes theoretical 1:1 

expectation. (b) Same as (a), but where all rate regimes with low information content (∆LogL < 3) are 

excluded. Slope of fitted regression line is 0.85. (c) Plot of all branch-specific estimates of speciation 

against the true values for all trees where at least one shift had non-trivial information content (∆LogL 

> 3) from analyses with γ = 1 (23 trees; 4374 branches total). Slope of fitted regression line is 0.931; 

results for other prior parameterizations are virtually identical to those shown in (c). Results obtained 

using MEA "random" setting; comparable results for BAMM v2.5 default settings shown in Fig. S19.  

 

Figure 13. BAMM rate estimates are reliable and consistent across all major releases of the software. 

(A) Pearson correlation between true and estimated speciation rates across rate regimes. Results are 

plotted as a function of minimum regime size; colors denote BAMM version. For example, x = 10 

corresponds to the correlation computed for the set of regimes with 10 or more tips. The four major 

releases of BAMM yield virtually identical results. (B) Slopes of the linear relationship between true 

and BAMM-estimated speciation rates across all rate regimes. (C) Correlations between true and 

estimated extinction rates across rate regimes. Analyses are based on 200 phylogenies simulated under 

MEA's general procedure, but minimizing ascertainment biases (Fig. 7c). The primary difference is 

that our simulations generated greater variation in tree size relative to MEA: although median tree 

sizes are similar (median size = 129.5 tips versus 84 tips in MEA), the means are very different (446 

tips here vs 89 tips in MEA). Despite differences in the underlying algorithms used to compute the 

likelihood, we observe no appreciable differences in performance across these four BAMM versions 
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(see also Figs. S25 - S30). Results shown here are based on the most commonly used prior on the 

number of shifts (γ = 1). A complete description of these simulations and associated summaries are 

found in Supplementary Information section S6. 
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APPENDIX: FORMAL ANALYSIS OF INCOMPLETE AUGMENTATION IN MEA 

 Here, we demonstrate that the data augmentation strategy used by MEA can yield 2 

probabilities that exceed unity. Consider the single lineage history illustrated in Fig. 1a, which 

has a probability that we denote by P(x0, x1 | nT > 0). This lineage history begins at time t0 with 4 

rates (λ0, µ0), undergoes a rate shift at time ts, and survives to the present with parameters (λ1, µ1). 

No other lineages are observed, although the process may have produced daughter lineages that 6 

failed to survive to time T.  Given that the initial probability of the data is unity, let λ1 = 0 and  

µ1 = 0. Thus, the probability of the segment (ts, T) = P(x1 | λ1 = 0, µ1 = 0) = 1, as no events can 8 

occur that can change the probability of the data. Letting η = 0, we will condition the probability 

expression in eqn 5 on zero unobserved rate shifts to obtain  10 

 

P x0 | λ0,µ0( ) 1− E0 t0( ) 
−1
φ−1

                 A.1 12 

 

where φ is the probability that there are no unobserved (extinct) rate shifts in the process that 14 

gives rise to the lineage history in Fig. 2a.  

 To show that this expression is invalid, we will demonstrate that, as the time interval ∆t = 16 

ts - t0 becomes very small, the probability P(x0 | λ0 , µ0) can become arbitrarily close to 1, given 

that the probability P(x1 | λ1 , µ1) is necessarily 1. However, the probability of extinction E0(t0) is 18 

independent of the duration of ∆t and depends only on the parameters at the root of the tree and 

the total age of the process (T). Hence, the survival probability (1 -  E0(t0)) can approach 0, 20 

leading to probabilities for the complete process that exceed 1.  

 22 



The analytical probability for the segment x0 is taken from the constant-rate birth-death process 

with arbitrary starting conditions and is given by the following expression 24 

 

P x0( ) = e µ0−λ0( ) ts−t0( )P x1( ) λ0 − µ0( )2

λ0 − λ0E0 ts( ) + e µ0−λ0( ) ts−t0( ) λ0E0 ts( ) − µ0( ) 
2

   A.2

 26 

 

which is equivalent to Rabosky (2014) under the substitutions ∆t = ts - t0 and D0 = P(x1), and 28 

which is also identical to FitzJohn et al. (2009) under the substitution f = 1 - E0. Letting P(x1) = 1 

and taking the limit as ts approaches t0, we have 30 

 

lim
ts→t0

P x0( ) = λ0 − µ0( )2

λ0 − λ0E0 t0( ) + λ0E0 t0( ) − µ0 
2 = 1

    A.3 
32 

 

Thus, as the time interval ts - t0 shrinks to zero, we obtain P(x0) = 1, which is intuitively obvious: 34 

the initial probability P(x1) is 1, and the time interval becomes sufficiently short that it is unlikely 

that any events will occur to change this probability appreciably.  36 

 Note that we can make the term φ arbitrarily close to 1 by simply assuming that either the 

generating process has a very low η, or alternatively, that the prior mean on the extinction 38 

probability is very low. If rate shifts occur and the new extinction rate is near zero, the shifts will 

generally survive to the present to be observed, regardless of η. Hence, we have 40 

P x0, x1 | nT > 0( ) ≈ 1− E0 t0( ) 
−1

      A.4 

 42 



and E0(t0) depends only on the initial parameters (λ0, µ0) and the total age of the process, T - t0. 

This is true even when the process undergoes an immediate shift to a new rate regime (e.g., ts is 44 

close to t0; ∆t close to 0). Hence, E0(t) can approach unity and the corresponding probability P(x0, 

x1 | nT > 0) is unbounded at 1 and can become infinite.   46 

 



Table 1. Key claims by Moore et al (2016) concerning the BAMM method for macroevolutionary dynamics.   
 
 
MEA claim How tested by MEA Assessment in present study 
1. BAMM likelihood 
function contains "serious 
error" as it ignores rate 
shifts on extinct lineages 

Likelihoods computed by BAMM compared to those 
from MEA's independent BAMM likelihood 
calculator that includes Monte Carlo simulation of 
extinction probabilities. 

Test whether MEA likelihood satisfies axioms of 
probability. Test whether MEA correctly 
implemented BAMM likelihood function. 

2. Likelihoods for rate-
shift models are invalid if 
they fail to account for rate 
shifts on extinct / 
unobserved lineages 

Biological relevance asserted, but not tested Test whether unobserved rate shifts bias 
extinction probabilities for biologically-relevant 
parameterizations of the diversification process. 
Test whether MEA Monte Carlo extinction 
estimates differ from constant-rate birth-death 
process approximation. 

3. CPP Prior model for 
diversification rate shifts 
in BAMM is problematic 

Theoretical demonstration that prior distribution of 
rate shifts across tree is non-uniform under BAMM's 
CPP prior model.  

Assess BAMM's performance on empirical and 
simulated datasets. 

4. Posterior on number of 
shifts extremely sensitive 
to prior 

Analyzed empirical and simulated datasets with 
BAMM v2.5 after activating an experimental (non-
default) program setting; results not compared to 
default program performance. Compared model 
posterior probabilities but did not use Bayes factors 
to account for model prior. 

Reanalyze MEA datasets with BAMM v2.5 
default settings; compare to MEA results. Use 
Bayes factors for model selection, as 
recommended by BAMM developers. 

5. Diversification-rate 
estimates using BAMM 
are unreliable 

Simulated phylogenies with rate shifts; analyzed 
each with BAMM. Assessed accuracy of branch-
specific diversification estimates. 

Assess ascertainment bias in MEA simulation 
study. Test whether MEA "rate variable" 
phylogenies have sufficient statistical power to 
infer rate heterogeneity. Determine whether MEA 
results reflect biased inference with BAMM or 
low power to infer rate variation. 
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Table 2. Diversification models and software implementations that allow speciation and extinction rates to vary among lineages ("rate 
shift" models) 
 
Model / reference  Extinction probability 

E(t) includes 
unobserved rate shifts? 

E(t) accounts for data augmentation? 

MEDUSA (Alfaro et al. 2009) No No 
Split-BiSSE and all split-class SSE 
models (FitzJohn 2009; FitzJohn 2012) 

No No 

Split-clade models from Morlon et al. 
(2011) 

No Conditions on survival of all subclades that have undergone rate 
shifts. 

DDD with subclade shifts (Etienne and 
Haegeman, 2012) 

No Conditions on survival the crown clade, given that one of the 
descendant lineages undergoes a rate shift 

BAMM (Rabosky 2014) No Implicitly conditions on existence of subtrees leading to rate 
shifts 

Moore et al. (2016) Simulates expected 
effects of unobserved 
rate shifts on E(t) under 
prior assumptions 

No 
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Data file(s): 
supplementary information and analysis code 
 
 
Thank you for submitting your data package 
to Dryad for journal review. Please read the 
following information carefully, so you will 
know what to expect during the rest of the 
data archiving process. 
 
YOUR DRYAD DOI 
 
Your data package has been assigned a unique 
identifier, called a DOI. This DOI is 
provisional for now, but may be included in 
the article manuscript. It will be fully 
registered with the DOI system when your 
submission has been approved by Dryad 
curation staff. 
 
doi:10.5061/dryad.36g21 
 
 
CITING YOUR DRYAD DATA 
 
Ensure that readers can find your data! 
 
We recommend that the article include a link 
to the Dryad data as follows: 
 
Data available from the Dryad Digital 
Repository: 
http://dx.doi.org/10.5061/dryad.36g21 
 
Your journal may follow the CrossRef 
recommendation that the data package be 
cited in the article Reference list. If so, 
the citation should include the Dryad 
package DOI, e.g.: 
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Author(s) (Year). Data from: Is BAMM flawed? 
Theoretical and practical concerns in the 
analysis of multi-rate diversification 
models. Dryad Digital Repository. 
doi:10.5061/dryad.36g21 
 
 
REVIEWER ACCESS TO YOUR DRYAD DATA 
 
Journal editors and anonymous peer reviewers 
may access your submission using the 
following temporary url: 
http://datadryad.org/review?doi=doi:10.5061/
dryad.36g21 
 
This url SHOULD NOT be included in the 

manuscript. Please use your Dryad DOI 

(above) instead. 
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